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The Crystal Structure of Ammonium Hydrogen p-Tartrate

By A.J. van BoMMEL*¥ aND J. M. BisvoET

Laboratorium voor Kristalchemie der Rijks-Universiteit, Utrecht, Netherlands

(Received T June 1957)

The structure of NH,~H-tartrate has been determined by means of a three-dimensional analysis.
The crystals are orthorhombic with a = 7-648, b = 11:066, ¢ = 7:843 A; space group P2,2,2,;
4 molecules per unit cell. Accurate intensities were obtained by Geiger-counter measurements.
The atomic coordinates and anisotropic temperature-factor parameters were calculated by least-
squares methods and from three-dimensional difference Fourier maps. Bond lengths and electron
densities have been measured with standard deviations of 0004 A and 0-1 e.A~3 respectively. The
positions of the hydrogen atoms have been determined. No indication of the binding electrons was
found. The absolute configuration of Rb—H-tartrate proves to be in accordance with the previously
determined configuration from Rb-Na-p-tartrate.

Introduction

Some years ago we determined the absolute configura-
tion of the tartaric acid molecule from the Rb-Na-
tartrate. In order to test this result by means of a more
accurately determined structure, we started the in-
vestigation of the isomorphous series Rb—H-tartrate,
K-H-tartrate and NH,~H-tartrate to obtain more ac-
curate atomic coordinates from the lighter NH, com-
pound and to introduce these into Rb-~H-tartrate.
During the investigation of the NH, salt our in-
terest was focused on the refinement of this non-
centrosymmetrical structure in a three-dimensional
analysis based on Geiger-counter measurements.

Two-dimensional analysis

Crystals of Rb-, K- and NH,~H-p-tartrates were ob-
tained by cooling a solution of these salts, saturated
at 50° C. The crystals are elongated prisms in the [100]
direction, and belong to the orthorhombic disphenoidal
crystal class (Groth, 1906-19).

The cell dimensions of the Rb and NH, compounds
were calculated from the zero layer lines of rotation
diagrams about [100] and [001], those of the K com-
pound were obtained from layer-line distances:

Rb-H-tartrate
a =17665, b=10980, ¢ ="7917A, all +0-003 4;
U = 666-3 43; D,, = 229 g.cm.~3%, D, = 2:33 g.cm.~3;
Z =4,

K-H-tartrate

* Now at the Natuurkundig Laboratorium der N.V.
Philips’ Gloeilampenfabrieken, Eindhoven, Netherlands.
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NH,-H-tartrate
a =7648, b =11-066, ¢ = 7-843 A, all +0,003 &;
U = 6638 A3; D,,; = 1-68 g.cm.~%, D_ = 1-69 g.cm.™3
7Z =4,

The space group P2,2,2, follows from the systematic
absences. Intensity data for the 2k0 and Okl reflexions
were recorded with Cu K« radiation on zero-level
Weissenberg films about the a and c¢ axes by the
multiple-film technique (Lange, Robertson & Wood-
ward, 1939) and estimated by visual comparison with
an intensity scale. The crystals were ground to the
shape of a cylinder with a cross section of 0-2 mm.
In the case of the Rb and K compound, absorption
was corrected for. Corrections for Lorentz and polari-
zation factors were applied and the observed structure
amplitudes were brought to an absolute scale in a later
stage of the analysis by scaling against the calculated
values.

Structure determination from the a and c¢ projections
Patterson projections along the @ and ¢ axes were

constructed for Rb—H-tartrate. Since the space group

P2,2,2, contains only fourfold general positions, Rb—

Rb vectors occur at

2y, %5 %, 3—22; -2y, 2z for the a-axis projection

and

%, +—2y; 22, %; -2, 2y for the c-axis projection.

Corresponding to these vector sets, each Patterson

projection showed three heavy peaks, giving for the
Rb coordinates

x=0917, y=0217, z=0-081.

The corresponding Fourier projections were synthe-
sized, using the signs of the Fourier coefficients given
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Fig. 1. Electron density of NH,-H-tartrate projected (a) on (100), (b) on (001).
Contours are drawn at equal intervals on an arbitrary scale.

by the heavy-atom contribution. The Fouriers showed
a considerable overlap of the atomic peaks, but by
using a model of tartaric acid it proved possible to
determine the coordinates of the O, C and N atoms.
These coordinates were used in the calculation of the
signs of the structure factors of the isomorphous K
and NH, salts. The Fourier maps of these salts also
showed a considerable overlap (Fig. 1). We therefore
decided to find the accurate coordinates of NH,—H-
tartrate from a three-dimensional analysis. With this
analysis in view, the coordinates found from the @ and
¢ Fourier projections in NH,~H-tartrate, were refined
by a least-squares method minimizing
R, = 3 (F,—F.)*.

n

Here 3 denotes a summation over all observed re-

n
flexions. In F, a temperature factor exp[—Bsin?0/4%]

was applied with B = 1-5 A2, deduced from the ratio
|F,|=|F,| against sin? §. Table 1 gives the atomic co-

Table 1. Atomic coordinates of NH,—H-tartrate.
determined from the [100] and [001] projections

x y z
0, 0779 0:390 0-358
0, 0-782 0-578 0-451
0, 0-442 0-597 0-329
0, 0-436 0-422 0-613
0, 0-228 0-358 0-214
o 0-128 0-392 0-478
N 0-917 0-214 0-072
oA 0-719 0-488 0-388
C, 0-529 0-475 0-332
C, 0-426 0-379 0-430
C, 0-233 0-364 0-372

ordinates of NH,~H-tartrate from which we started
the three-dimensional analysis.
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Determination of the absolute configuration of the tartaric

acid from the Rb—H compound

The principles of the absolute-configuration deter-
mination are outlined by Bijvoet (1954) and a detailed
discussion of the methods is given by Peerdeman &
Bijvoet (1956). In using Zr K« rays, which excite the
K electrons of the Rb atoms, the differences in inten-
sity of the hkl and Akl reflexions of Table 2, column (4),

Table 2
Calculated Observed
N—

Rkl Tkt Irl gy i
(1) (2) (3) (4)
113 281 351 <
114 412 369 >
123 371 482 <
124 226 212 >
125 63 52 >
126 159 147 >
135 227 278 <
141 239 209 >
143 188 149 >
146 80 93 <
151 359 316 >

have been observed. The calculated relations are given
in columns (2) and (3).

The Rb-H-tartrate confirms the result concerning
absolute configuration deduced previously from Rb-
Na-tartrate (Peerdeman, van Bommel, Bijvoet, 1951).

Three-dimensional analysis

Measurement of the integrated intensity by means of a
Geiger counter
We measured the intensities by means of a Geiger
counter, high accuracy being aimed at. Geiger counter
measurement of single crystals in two dimensional
work is well known. Cochran (1950) has examined the
accuracy of such measurement.

Apparatus

We used a Bragg spectrometer which was adapted
for measurements by means of a Geiger counter. The
crystal mounted on a goniometer head could be
oscillated around the vertical axis by a synchronous
motor. The arm bearing the counter could be tilted
out of the horizontal plane for measurements of higher
layer lines. On two scales the position of the crystal
and the counter could be read. In order to centre and
adjust the specimen, the counter could readily be
replaced by a microscope. With this apparatus it was
possible to measure reflexions with reflexion angle of
azimuth 2¢ and height x4 for 0° < 2¢ < 145° and
—10° < u < 50°.

An argon—chlorine-filled tube (Philips No. 62019)
was used, connected by a coaxial cable, 60 cm. long,
with the stabilized high voltage and scaler, By sta-
bilization of the primary a.c. supply, the filament

current and the tube current, the output of the X-ray
tube was kept constant to within {9, over a period
of 24 hr.

Monochromatization of radiation

Besides the characteristic radiation, an X-ray beam
contains a considerable amount of white radiation
over a wide range of wavelength. Small ranges of this
continuous spectrum, around the wavelength of the
characteristic radiation used and its submultiples, will
be reflected together with the characteristic radiation
and hence will influence the measured intensity. As
to the wavelength range & 1, it follows from

2d sin 6 = nl
or

_ 2d cos 0

A 49

that the dispersion of the reflected radiation increases
with increasing diffraction angle. The correction for
this white radiation has been measured by Cochran
(1950) and amounts to 69% at 20 = 10°, and to less
than 19, at 26 = 50°.

The contribution of the wavelength ~ 34 and }4
can be corrected for by the balanced-filter method
(Ross, 1928), but this greatly increases the amount of
work. Besides, this white radiation causes a consider-
able background, which makes it extremely difficult
to measure weak reflexions. For these reasons we used
a monochromatized beam, obtained by reflexion from
a bent quartz crystal. In using the 1011 reflexion, the
intensity of the 14 compound is reduced to about {9%
and that of }4 is virtually zero. Fig. 2 shows the ex-
perimental arrangement.

Fig. 2. Schematic drawing of the apparatus. 1: Target of the
X-ray tube. 2: Bent quartz monochromator. 3: Collimator.
4: Crystal. 5: Screening slits before the counter tube.
6: Counter.

Relation between the number of counts and the integrated
intensity
The number of counts recorded by the counter will
not be proportional to the X-ray intensity, since any
number of impulses occurring within the resolving

5*



64 THE CRYSTAL STRUCTURE OF AMMONIUM HYDROGEN p-TARTRATE

time, 7, of the counter will be recorded as one count.
When the source produces impulses at random inter-
vals, as in our case of a d.c.-excited X-ray tube, the
number of lost counts can be calculated. Let N, be
the number of counts recorded in 1 sec., and 7 the
resolving time of the counter, then the corrected
number of counts in 1 sec. is given by

Ny

N = .
1-Nyt )

In measuring the integrated reflexion intensity in the

oscillating-crystal method, the reflected beam varies

in intensity as the crystal passes through the reflexion

range. Here the corrected number of counts of a re-

flexion is given by

M

M=—>° 2
= (L, T) @

where M is the measured number of counts in a time

T sec. and 7’ is the so-called effective resolving time.
According to Cochran (1950) ' = K7, where

VK — R.m.s. reflecting power of crystal over range «
B Mean reflecting power over this range

’

K can be calculated from the profile of the reflexion.
It is easier, however, to determine t’ experimentally
by interposing Ni foils of known absorption in the
reflected beam. From the reduction factor p = M,/ M,,
7’ can be calculated from

*Aﬂ_
1— (M| T)0'
_ My
1— (Mo/T)Y

Determination of 7’ for a number of strong reflexions
revealed the fact that if 7 relates to the measurement
of the reflexions from background to background, 7’
proves to be a constant.

Table 3 gives the reduction factor of the measured

Table 3. Number of counts (M,) of a reflexion and
number (M) after correction
M

0 : ,
M= ———— = 22 =
M =, Ty’ with 5 psec and T = 90 sec.
Number Mom My,
of Ni foils M, Monpy M Mgy
(1) (2) (3) (4) (3)
0 117240
1339 V8817 500
1 87580 117625
1-376 1-505
2 63630 78136
= 1-410 1:503
3 45140 51980
1-450 1-519
4 31125 34230
1-447 1-491
5 21511 22950
1-476 1-508
6 14569 15215
1-481 1-502
7 9835 10130
1:455 1-469
8 6759 6895
1-492 1:502
9 4529 4589
1-525 1-532
10 2970 1-498 2996 1-503
11 1982 1993

Mean 1:505

intensity by interposing Ni foils of known absorption,
for a reflexion of NH,~H-tartrate. Column (3) gives
the uncorrected values and column (5) the corrected
values with 7 = 90 sec. and 7" = 225 ysec. A more
suitable method for measuring ¢’ consists in deter-
mining the intensities of the strong reflexions at two
different, known outputs of the X-ray tube. For a
number of reflexions measured at 40 kV., 20-5 mA.
and 30 kV., 10 mA. respectively, Table 4 gives the

Table 4. Intensity of some reflexions with two different
outputs of the X-ray tube

In columns (6) and (7) the ratio before and after correction
is given. 7’ = 225 usec. T = 90 sec.

My, M, M, M,

40kV. 30LkV. 40kV. 30kV. My M,

Rkl 20-5mA. 10mA. 20-5mA. 10mA. M, M,

(1) (2) (3) (4) (5) (6) (7)
520 12292 2790 12682 2810  4-406  4-513
530 10342 2290 10616 2303 4516  4-609
540 12680 2888 13095 2909 4391  4-501
560 12476 2770 12877 2790 4504  4-615
400 28156 6636 30282 6748  4.242  4.487
410 20184 4700 21256 4756  4-294  4-469
420 18940 4390 19880 4438  4.314  4-479
320 80796 21902 101248 23170  3-689  4-369
350 54246 13648 62758 14130  3-975  4-441
360 12356 2800 12750 2820 4412  4-521
370 38126 9052 42144 9262 4-412 4-550
200 22341 5072 23662 5138  4-405  4-605
230 68104 17636 82078 18450  3-862  4-449
Mean 4:508

number of counts and their ratio non-corrected and
corrected (columns (6) and (7) respectively). With this
method it is easy to determine 7’ for each crystal and
each layer line.

Measurement of the integrated intensity

For the measurement of the integrated intensities
we used the usual oscillating-crystal method. The
crystal was oscillated through the reflexion range by
means of a synchronous motor. The counter was kept
in the reflexion position whilst the slits shielding the
counter were sufficiently wide for the whole reflexion.

The range over which the crystal had to be oscillated
varied for a zero layer line from 1° at the lower re-
flexion angles to 1-5° at the higher reflexion angles.
The angular velocity was 40'/min. so the time re-
quired for half an oscillation varied from 90 sec. to
about 135 sec. In measuring higher layer lines the
time of oscillation was somewhat higher.

Cu K« reflexions were recorded in the range
0 < sin 6/4 < 0-63;

Cu Kf measurements extended the range to
sin 6/ = 0-72.

For every reflexion the number of counts occurring
in at least one complete oscillation was recorded. For
the medium strong reflexions the number of counts
was more than 10%. The statistical standard deviation
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in a number of N counts being /N, we have for these
reflexions a standard deviation better than 19.

To reach this accuracy the very weak reflexions
would require very large measuring times; for these
unimportant reflexions, however, we took a maximum
of five oscillations.

For each reading the following corrections were
applied:

(1) Corrections for lost counts:
— MO
1 (M, T)7
(2) Correction for background: (a) cosmic back-
ground; (b) X-ray background, due to radiation

scattered from the air and incoherently from the
crystal itself.

M

For our counter the cosmic background was 40
counts/min. The total background was determined
over the whole range 0° < 2¢ < 145° for positions of
crystal and counter beyond the reflexions. Fig. 3 gives

0 20 40 60 80 100 120 140
26()
Fig. 8. Cosmic X-ray+background from a crystal of NH,~H-

tartrate. The crystal was a cylinder about [100] with a cross-
section of 0-18 mm.

the measured background for a crystal of NH,~H-
tartrate. The crystal had a cross-section d = 0-18
mm. and the background was measured with the X-ray
tube operated at 40 kV., 20-5 mA.

(3) From the corrected intensities the F2 values are
obtained using the Lorentz and polarization factors
and scale factor:

F? =CI,/LP,
Lorentz factor
1

- (Cochran, 1948);
cos u sin 2¢

polarization factor

_cos® u+cos? 20 — cos® 2« cos? u sin? @
B 1+cos? 2«
(Whittaker, 1953).

P

In these formulae

7 angle of elevation of the layer line,

2¢p = scattering azimuth,

20 = scattering angle of the monochromator crystal
(1011 reflexion of quartz and Cu K« radiation,
20 = 26° 44”).

(4) The absorption correction could be omitted.

To obtain all reflexions for the three-dimensional
analysis we measured all reflexions of the zero, first,
second and third layer lines of crystals about [100],
[001] and [101].

Each layer line gives the F values on an arbitrary
scale. By comparison of the common reflexions all
intensities were normalized to the same level and then
brought on an absolute scale by the condition X|F,| =
2\F,.

Accuracy of the measurements

The statistical standard deviations in the measured
intensities for all reflexions, except the very weak
ones, is better than 19,. In the case of the very weak
reflexions a minimum of about 1000 counts was
recorded, increasing the s.d. up to 3%. Beyond the
region of anomalous scattering the eight |A||k||l| re-
flexions are equal and on each layer line two or four
independent F? values can be measured. Comparison
of these values gave a s.d. of 3% in the intensity.

An impression of the total inaccuracy in F,, caused
by errors in the measurement and in the correction
factors and by the individual crystal behaviour can
be obtained by comparing F, values from different
crystals and layer lines. For these common reflexions
we calculated a standard deviation of 39,

Comparison with photographic methods

Before we had a Geiger-counter equipment at our
disposal, the reflexion intensities had already been
obtained by photographic measurement. The reflexions
were recorded on equi-inclination Weissenberg dia-
grams, and the intensities estimated by visual com-
parison with an intensity scale. After correction for
Lorentz and polarization factors, the F, values were
brought to an absolute scale by comparison with F,
values. For these photographic F, values of different
crystals and layer lines the disagreement index
amounts to

R = Z||F,|—|F,)|+~Z|F| = 0-08 .

Comparison of the photographic values with the coun-
ter values gave a disagreement index:

R = Z“th.l“]Fctn”+2lFl =01.

The photographic values of the strongest reflexions
proved to be systematically too low.

Finally a comparison will be made between the
photographic and counter measurements, as to the
time required in their measurement.

The photographic diagrams were made with an
exposure time of 25 hr. Development of the five films
of one layer line takes about 1} hr. and the eye-
estimation of about 400 reflexions 10 hr.

In Geiger-counter measurements, each reflexion
takes about 6 min., giving a total time of 40 hr. for
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400 reflexions. It should be noted, however, that the
time required for the very weak reflexions is much
larger in the latter case and increases to 30-45 min.
for such a reflexion.

Three-dimensional refinement of the structure of NH,~H-
tartrate

From the coordinates given in Table 1 the phases
of the Akl reflexions were calculated, and with these
phase angles and the Geiger-counter |F,| values a
three-dimensional Fourier synthesis was performed.
The electron density was calculated in one-quarter of
the unit cell (the asymmetric unit). The atomic co-
ordinates were determined by the method given by
Megaw (1954).

In this Fourier the two aliphatic hydrogen atoms
appeared as separate maxima, though the exact
determination of their position gave difficulties owing
to the broadness of the peaks. On the places where
the bridge hydrogens were to be expected, in view of
the intermolecular distance, regions of positive electron
density indeed were seen to be present. For the co-
ordinates of these hydrogen atoms the best values
were chosen.

As to the hydrogen atoms of the NH,-group, no
definite positions could be determined, so we assumed
the hydrogen atoms to be distributed over a sphere of
radius of 1 A. The coordinates from this Fourier are
given in Table 5. Structure factors calculated with

Table 5. Coordinates from the three-dimensional Fourier
with Geiger-counter F values

T Y z
0, 0-7900 0-3845 0-3712
0, 0-7689 0-5760 0-4500
0, 0-4407 0-5913 0-3261
0, 0-4328 0-4189 0-6125
0, 0-2134 0-3605 0-2206
0, 0-1150 0-3985 0-4779
N 0-9144 0-2170 0-0692
c 07114 0-4852 0-3915
C, 0-5213 0-4758 0-3242
C, 0-4205 0-3848 0-4390
C, 0-2264 0-3811 0-3725
H, 0-520 0-450 0-200
H, 0-480 0-299 0-436
H, 0-419 0-594 0-190
H, 0-377 0-506 0-655
H, 0-933 0-390 0-410

these coordinates and the atomic scattering factors,
given in the tables of Hoerni & Ibers (1954) gave a
disagreement index R = 0-13 including the hydrogen
atoms and B = 0-14 excluding them. In this structure-
factor calculation we used an isotropic temperature
factor with B = 1-5 A2

Comparison of |F,| and |F,| showed that for five
of the strongest reflexions, namely 020, 040, 310, 031
and 012, [F | was too low, probably owing to extinc-
tion. In all our further calculations we therefore as-
sumed for these reflexions |F,| = |F,].

The next refinement of the atomic coordinates was
performed by the method of least squares.
Minimizing the function

Rl = {IF0|—|F('I}2’
kL
and after substitution of
AF = |F,|—|F |

in the usual way, ¢,; is obtained—r denoting the atom,
j(1, 2 or 3) its coordinate—:

F
sapdFd_ 5y, OFd0IF
hil Ly IR % 61:,,.,» 8x,i
Omission of the terms
*aIFC| —alﬂ for 25 == rj
0z, 0xy; J J
gives
o|F O|F\?
YL { | cl}_
S 0%, [ \ 0,

After several successive refinements, including the
adjustment of the scale factor and isotropic tem-
perature factor, the disagreement index was reduced
to B = 0-10.

A number of discrepancies between F, and F., re-
mained, and these could not be eliminated by shifts
of the atomic coordinates. At this stage we attributed
to each individual atom a proper isotropic tempera-
ture factor. The temperature-factor parameters were
refined by a least-squares treatment according to the
formula

3IF,|

OF
A% _ 4B ( .
=47 3B, 2z aB,>

(quite analogous to the one mentioned just before).
The result is given in Table 6.

Table 6. Isotropic temperature-factor parameters

B (A2 B (A?)
0, 181 N 1-75
0, 193 C, 143
0, 150 C, 125
o, 17 C, 133
0, 168 C, 135
0, 178

The next three-dimensional difference Fourier gave
clear indication of the anisotropic thermal motions
of the atoms (Jeffrey & Cruickshank, 1953). A section
of this difference Fourier is shown in Fig. 4(a). In
the case of harmonic anisotropic vibration, the atomic
scattering factor for a certain atom is given by
(Cochran, 1954).

f = foexp [—2m*(u3nd+ uind+uind) §7],
where

Jo = scattering factor for the atoms at rest,
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dimensional difference Fourier. The parameters g;
were determined by the method of least squares. This
time we minimized the function

1
Z A {IF =)
wiet Jfr

Neglecting cross-terms connecting different atoms,
one gets for each atom three equations of the form

1 0lF 1 olF|olF,|
soaptd_ 52 !
hkl f r a%‘i Rkl f r i 6%‘1” aQri

Aqri' .

In order to simplify our calculations, we have
initially taken the principal vibrations coincident with
the a, b and ¢ axes, as this proved to be nearly always
the case for most atoms. In the final structure-factor
calculation the actual directions, as derived from the
difference Fourier maps, were introduced.

A final three-dimensional difference Fourier cal-

culated with the parameters of Table 7 showed a
Q maximum electron density less than 0-3 e.A-3 (Fig.
4(b)). The electron density shows no indication of
binding electrons between the atoms (Cochran, 1956).

A final least-squares refinement of the atomic co-
ordinates, gave shifts of less than 0-003 A. In this
final stage the disagreement index had a value R =
O 0-05;.

o The hydrogen atoms
S~ After the refinement of the parameters of the O,
QO C and N atoms we defined the positions of the hydro-
gen atoms, assigned in a former stage of the analyses.
: The positions of these atoms were determined from
0 (b) b a difference Fourier with coefficients |F,|—|F, in

which now the contribution of the hydrogen atoms in
Fig. 4. («) Difference Fourier section D (g%, Y, 2) before cor- F. was omitted
rection for the anisotropic temperature movement of the ¢ .
atoms. Contours are drawn at an interval of 0-1 e.A—3.

Positive areas are given by full lines, negative areas by 2_3
broken lines. The zero line has been omitted. (b) Difference 55 s
Fourier section D(g,y,2) after correction for the aniso- gg @
tropic temperature movement. Contours as in (a). =
60 0
45
u; = r.m.s. vibration amplitude in the direction of Z 60 X Z_g
. . - . 4
principal vibration, I a% T

n; = direction cosine of the reflexion vector § in
respect to the direction of principal vibration,
[S}= 2 sin /4.

3 . &0
In the case of an orthorhombic erystal this may be 10
written 60
3 k I \* N E%
f=loexp 2 —q _gi1+ggi2+_gi3 )
i a c t 0
where g¢; = 27%? and '
g:1, 9i2 and ¢,5 are the direction cosines of the direction () —Y
¢ of Pr,lknclf al*v1bratlor} in respect to the reciprocal Fig. 5. Fourier sections through the centres of the hydrogen
axes a*, b*, ¢* respectively. atoms. (a) An aliphatic hydrogen atom H,: D(g;, ¥, 2)
. . d D(z, y, 48). (b) A bridge hydrogen atom Hy: D({%, ¥, #
For each atom the directions of the axes of the i D((Q;’yy"’_%‘f%))' ©) g hycrog s Dl ¥ 2)

vibration ellipsoid were determined from the three- Contours at an interval of 0-1 e.A-3, Zero line omitted.
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Table 7. Final atomic coordinates and temperature-factor parameters

z Y z q, axis
0, 0:7949 0-3835 0-3715 [100]
0O, 0-7679 0-5758 0-4526 [100]
O, 0-4388 0-5898 0-3266 [612]
0, 0-4319 0-4172 0-6122 [14,1.8]
O 0-2062 0-3604 0-2184 [100]
O¢ 0-1085 0-3991 0-4806 [100]
N 0-9160 0-2161 0-0716 [100]
C, 0-7078 0-4844 0-3896 [100]
C, 0-5202 0-4749 0-3255 [100]
C, 0-4186 0-3864 0-4376 [100]
C, 0:2293 0-3803 0-3747 [100]
H, 0-528 0-445 0-203
H, 0475 0-306 0-431
H, 0417 0:600 0-195
H, 0-378 0-506 0:645
H 0-931 0:395 0-400

5

The zy and yz sections of this Fourier through the
centres of the hydrogen atoms H, and H; are given
in Fig. 5.

Comparison of the electron density in the centre of
each hydrogen atom with values calculated by
McDonald (1956) shows that for the atoms H; and H,
a temperature factor with B = 2-0 A2 and for H,,
H, and H, with B = 4-0 A2 must be applied.

No clear indication of the hydrogen atoms of the
NH; group was found, so we conclude that the original
model with hydrogen atoms in a sphere of radius of
1 A around the nitrogen atom represents a good ap-
proximation.

Bond distances and angles

The final atomic parameters, as obtained from the
least-squares refinements, are given in Table 7.

From the anisotropic vibration parameters it ap-
pears that the oxygen atoms of the carboxyl groups
oscillate around the C,—C, and C,-C, axes respectively.
Cox, Cruickshank & Smith (1955) remarked that in
the case of a rigid-body oscillation the time-averaged
electron distribution is found towards the centre of
the arc of rotation. From the vibration amplitudes we
calculated for each oxygen atom of the carboxyl group
a shift in the position of 0-004 A, which has to be
taken in the O,-0O, and O;-O, directions. The corrected
parameters for these atoms are given in Table 8.

Table 8. Coordinates of the carboxyl oxygen atoms after
correction for the oscillation of these groups

x y z

0, 0-7948 0-3831 0-3714
0, 0-7680 0-5762 0-4527
0, 0-2064 0-3603 0-2179
0, 0-1083 0-3992 0-4811

As to the other atoms of the tartrate ion, it appears
that the anisotropic movement is not due to a rota-
tion; for these atoms, therefore, no correction was
applied.

Bond lengths and bond angles calculated from the
parameters of Table 7 and Table 8 are given in Fig. 6
and Table 9 respectively.

Isotropic temperature factor

g, axis g3 axis 4q, 4q, 4q,
[021] [014] 116 1-70 3-08
[032] [013] 1-42 190 3-20
[130] [T03] 1-42 1-49 1-54
[041] [518] 1-66 263 1-19
[021] [014] 1-51 2-61 1-42
[010] [oo1] 0-96 3-24 1.52
[010] [oo1] 1-82 1-97 1-97
[021] [014] 0-90 190 1-36
[010] [001] 0-96 1-43 103
[041] [018] 0-96 1-49 1-49
[031] [0186] 0-88 1-33 1-66

Fig. 6. Bond lengths in the tartaric acid ion.

Accuracy of the results

From the standard deviation of the observed struec-
ture-factor values, ¢|F, = 0-4 determined from the
intensity measurements of different crystals and layer
lines, we calculate for the atomic coordinates a stan-
dard deviation ¢(r) = 0-001 A (Cruickshank, 1949).

Table 9. Bond angles in the tartaric acid ion

0,-C,-0, 124° 29’ 0,-C,-0g  124° 50’
0,-C,-C, 112° 28’ CyC-0;  116° 58’
0,-C,-C, 123° 3’ C-C-Og  118° 12
C,-C,—C,  109° 28’ C,—C,—C,  108° 53’
C,—C,-0;  110° 29" Cy-C4-0, 111°28
C3-Cy-0;  110° 24’ C-Cy-0,  112°59°
H,~C,-C, 106° 16’ Hy-Cp-C,  110° 40’
H,-C,-C, 111°6 H,~C4-C,  108° 54’
H,-C,-O, 109° 6’ H,~C;-O, 103° 49’

Hy-0,-C,  99° 14

H,-0,-C, 114°24’

H;-0,-C, 112°10

Taking AF = |F,|—|F,| as a measure for the ac-
curacy of the structure, we find for the atomic co-
ordinate o(r) = 0:002-0-003 A and for the electron
density o(p) = 0-1 e.A-3. Hence there is no reason ot
introduce more parameters in our model.
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Discussion

As in the crystal structures of all tartrates, here, too,
the carbon chain and the oxygen and carbon atoms
of each half -CHOH-COOH of the tartraric acid mole-
cule are nearly planar (Beevers & Hughes, 1941;
Stern & Beevers, 1950; Sprenkels, 1956). From the
intramolecular bond lengths and angles (Fig. 6 and
Table 9) we see that the two halves of the molecule
in respect to the carboxyl groups are different.

The group C,0,0, with distances C,-O, = 1-31 A
and C,-0, = 1-26 A with 0,-C~C, = 112° 18’ and
0,-C,—C, ='123° 3’ clearly is the non-ionized side of
the molecule, with the longer C,—O, bond due to the
C-0-H group. Indeed the position of H, was found
on the O, oxygen atom. The group C,0,04 with two
equal bond lengths of 1-26 A and 0,-C,~C; = 116°58’,
0,-C,—C; = 118° 12’ is the ionized side, and is sym-
metrical in respect to the C4—~C; axis.

Calculating the double bond character from

3z

2z +1
where R, = 1-42 A (the distance C-0), B, = 1-20 A
(the distance C=0), we find in the group C,0,0,
z = 025 for C,—0, and z = 0-75 for C,~O,, whereas
z = 0-50 for both C;~O; and C,~O4 in the group
C,0,0,. This is quite in agreement with the fact that
in aliphatic carboxyl groups the only resonance is
between

R = R,—(R,—R,) (Pauling, 1940) ,

C=0 and C-O
| I
0 0

All other C-C and C-O bond lengths and angles in
the molecule are normal. The C-H distance (C;—H, =
102 A and C;-H, = 100 A) is shorter than that
determined from Raman spectra (1-08 A), which gives
an indication that the electron cloud does not coincide
with the proton.

The crystal structure of NH,~H-tartrate consists of

Fig. 7. The [001] projection of the cell content between z = 0
and z = 3. The whole projection can be found by the
operation of the screw axes [001].

layers perpendicular to the [010] direction. Layers of
hydrogen-bonded tartrate ions are separated by layers
of cations (Fig. 7).

Each NH, ion is surrounded by eight oxygen atoms
in a deformed cubic environment. The distances N-O
are given in Table 10. The hydrogen bonds of one

Table 10. Nitrogen—oxygen distances

N-O,I 313, A N-OII 288, A
N-O;I 296, N-O,III 290,
N-O,11 285 N-0,IV 287,
N-O,IT  3-08, N-Q,IV  3-15;

tartaric ion with its surrounding within the layer are
shown in Fig. 8.

b,

Fig. 8. Hydrogen bridges between a tartrate ion and its
surroundings.

Of the non-symmetrical carboxyl-group C,0,0, the
atom O, has a distance of 2:55 A to the atom O of
the next ion. The distance O,—H; is 1-07 A.

The other hydrogen bonds are between the atoms
OL-OI and O}-O%! (molecule II arises from I by the
operation of the twofold screw axis [001]):

0l-O¥ = 274 A, 0,-H, = 1-06 &;
0}-OF = 2.80% A, 0,-H, = 1-09 A.

Tn all three cases the hydrogen atoms lie near the
line connecting the bonded oxygen atoms.

The structure shows a marked similarity with that
of the racemic compound. In the latter there are
alternately layers of D and L molecules, the D layers
being identical with a layer of D-NH,~H-tartrate.
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The Determination of the Coordinates of Heavy Atoms in Protein Crystals

By W. L. Brace
The Royal Institution, 21 Albemarle Street, London W. 1, England

(Recetved 25 September 1957)

The paper deals with the determination of the coordinates of heavy atoms added to protein crystals.
Previous methods have in general been based on Patterson or Fourier series. In the method de-
scribed here, the changes in amplitude of the individual diffracted beams due to the addition of
the heavy atom are plotted on a graph, from which the required coordinate can be deduced by
inspection. Examples of the determination of coordinates in actual cases are given.

1. Introduction

The method of determining the phases of F(hki)
values in protein crystals by the addition of heavy
atoms has been established by Perutz (Green, Ingram
& Perutz, 1954). He was the first to show that certain
chemical groups containing a heavy atom such as
mercury can be added to the molecules without ap-
preciable alteration of crystal form, and that they
produce measurable differences in the values of 7(hkl).

In a centrosymmetric projection, where all structure
factors are real (plus or minus), the values of AF =
(|F (protein+heavy atom)|—|F (protein)|) can be used
to form a ‘Difference Patterson’. This is so because
(AF)?: = (F(H))?, F(H) being the structure factor of
the heavy atom alone. The peaks in the Patterson
indicate the approximate coordinates of the heavy
atom, and from these the signs of most of the AF
values can be ascertained. A “Difference Fourier’ can
then be formed with AF values which gives more
accurate values of the coordinates and clears up doubt-
ful signs. A knowledge of the signs, and of the effect
of the heavy atom in increasing or decreasing the
intensity of each diffracted beam, enables the signs of
|F(P)| to be determined and a Fourier of the protein
structure to be formed.

The methods outlined above can be applied only to
centrosymmetrical structures. Perutz (1956) has de-
scribed Fourier-series methods of dealing with the
more complex cases without symmetry centres. The

present note describes simple alternative ways of
measuring coordinates of added heavy atoms which do
not involve the use of Patterson or Fourier series and
can be applied to non-centrosymmetric cases. Esti-
mates of the coordinates so obtained are compared
with those deduced by other methods. It is important
to know these coordinates as accurately as possible
when they are used to determine the phases of
F(protein) (see, for instance, Harker (1956) and the
methods described here have certain advantages as
regards accuracy.

2. The determination of x and 2z coordinates in a
monoclinic crystal

I am indebted to Dr J.C. Kendrew for letting me
use some unpublished F measurements for Sperm
whale myoglobin Type A, determined in the course
of an investigation directed towards a three-dimen-

sional Fourier of the structure. They are measurements
of |[F(hk0)| and |F(0kl)] for

myoglobin,

myoglobin -+ parachloromercuri-benzenesulphonic
acid, PCMBS,

myoglobin + mercury diammine, HgAm,,

myoglobin+gold chloride, Au.

The space group and cell constants are



